Entropy, Cross Entropy and Data Assimilation

ODE — Observations

T = F(x)

x|0 : 10000] = integrate( F, ny = 10000, Ar = 0.15)
bins = [~10,0, 10]
y = G(x)
y[0 : 10000] = digitize(z[0 : 10000, 0], bins])
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Data Assimilation:
Observations — States € R

Laser data from Tang and Weiss
Extended Kalman smoothing for state space trajectory estimate
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HMMs & Data Assimilation:
Observations — States € Z

Parameters, 6, of Hidden Markov Model (HMM) with states s € Z and

observations y € Z:

Pg . g: State to state transition probabilities

Py . g: Conditional observation probabilities
Estimation algorithms:

Forward Filter: Conditional probability of states P(z[t| | |0 : t + 1], 0)

MLE Parameters: (Forward-Backward, also known as Baum-Welch)

0 = argmax P(y[0 : 1000] | 6)
0

MAP States: (Viterbi)

§[0 : 1000] = argmax P(s[0 : 1000] | [1000], 6)
s[0:1000]
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Variations on a Theme

Forward data assimilation alternates between update & forecast.

alz,t) = P(X[t|=x | yl0:t+1])

Update: a(r,t) o< a(z, t) Py x (ylt] | x)

One must evaluate [ a(x,t)dz to normalize the update.

a(x,t) = P(X[t] =2 | y[0:t])

Forecast:
afat) = [ alxt = DPyxlo | iy

Kalman Filter Py, y and Py, x are linear with Gaussian residuals.

Extended Kalman Filter Kalman filter for nonlinear functions with
local linear approximations.

Hidden Markov Model State and observation spaces are finite sets.

Particle Filter Monte-Carlo for integrals. Probabilities represented by
clouds of points.

Entropy and Lyapunov Exponents

Entropy for true model P,

lim —~E,, [log(Pa(y[0 : n])

n—oo n

h(p) =

For Vy|0 : n| € Ag”’)? the typical or plausible set

— log(Py(y[0 : n)))

= h £+ €  definition A is the rate that prob — 0.
n
Pr {Ag”)} >1—c¢€
‘AE”) < ehte) h is the rate that AE”) OTOWS.

Cross Entropy of other model 6 wrt true u

h(ul6) = lim —~E, [log(Py(y[0 : n]))

n—o0o0 n
h(p||0) — h(p) > 0 equality — p = 6 almost everywhere

Lyapunov exponents, \; characterize the exponential rates that trajec-
tories converge or diverge. Estimate them numerically with Benettin’s pro-
cedure that requires integrating tangent equation. Work of Ruelle, Pesin,
Ledrappier, Young says that for the Lorenz system the largest exponent is

equal to the entropy, ie,
h = )\0 ~ 0.900.

S50 0.906 is a lower bound for the cross entropy of a model of time series
from the Lorenz system.
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Use HMMs with many states to approach the bound.

Extended Kalman Filter

Given a model for states x and ob- For Figures 1-3 I added draws from
servations y in which Gaussians with scales oy and o¢ to
the states and observations respec-
t+1] = f(x[t]) + nlt] . e Pe
tively of Lorenz simulations and ap

ylt] = g(zlt]) + €[t] plied EKFs.

where f and g are differentiable but — oot | 215 — oo

7.05 1 update update

. oo 27.10
perhaps nonlinear and n and € are iid 7
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filtering (EKF) is the practice of us- 2695 1
ing Gaussians to model conditional ol — [ S
distributions of states and observa- ) Comen
tions. Omne propagates the means

with the functions f and ¢ and uses Figure 1: Level sets of conditional
the derivatives of those functions to Gaussians illustrate forecast and up-
calculate covariances. date distributions.
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Particle Filter
To find something better than an HMM with zillions of states:

e Cover attractor with boxes, ie, particles

e Assign a uniform probability density in each box

e Use numerical ODE integration of Lorenz system and its tangent to move

boxes forward 1n time

e When boxes get too big subdivide them

e When boxes overlap and get too numerous, random resample to decimate
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Figure 3: Dependence of cross en-
tropy on state noise, oy, observation
noise, o, and the time interval be-
tween samples, 7. While the slopes
on the right match the true entropy,
the intercepts are negative because
the models are not optimal.

Figure 2: Time series of observations
and characterizations of the forecast
eITors.



