
i
i

“software” — 2013/5/15 — 7:37 — page i — #1 i
i

i
i

i
i

Software for Hidden Markov Models and

Dynamical Systems

Andrew M. Fraser

May 15, 2013

i
i

“software” — 2013/5/15 — 7:37 — page ii — #2 i
i

i
i

i
i

ii

i
i

“software” — 2013/5/15 — 7:37 — page iii — #3 i
i

i
i

i
i

Preface

{chap:preface}
This document describes hmmds3, a revision of the software I used to produce
Hidden Markov Models and Dynamical Systems, hereinafter the book. When
I started working on the book, I decided to structure it as a software project
using version control to help with collaboration and keep track of changes. I
used gnu make to control building the figures and formatting the text. I hoped
that using the structure of a software project would produce a single package
that achieved the following goals:

• Keep a record of all techniques

• Allow readers to read, run, modify, and redistribute the code

• Allow readers to verify results

• Make formatting techniques available to other authors

Building
{sec:building}

To build this document, from a command line, go to the root directory (just
above TeX) and enter the following

scons TeX/software.pdf

Some of the derived files (those that take days to build and those for which
the present code does not work) are included in the derived data directory of
distribution. If you want to rebuild those files, simply remove them and rebuild
using the above procedure.

showlabels
{sec:showlabels}

The text {sec:showlabels} that appears in the margin is produced by the
package showlabels. I find it helpful as I write LATEXdocuments to be able to see
the symbolic names of labeled items. You can eliminate the labels by removing
the line \usepackage{showlabels} from the file software.tex and rebuilding
this document, software.pdf.

iii

i
i

“software” — 2013/5/15 — 7:37 — page iv — #4 i
i

i
i

i
i

iv PREFACE

Changes
{sec:changes}

A preliminary version of Release 1.0 of the hmmds3 produced the figures in
this draft document. When I release the software, each figure in the book will
map to a figure in this document. Below, I list the major differences between
hmmds3 and the software that I actually used to produce the book:

Error described and addressed: The algorithm for decoding class sequences
described in Chapter 6 of the book does not work in general. In designing
the flawed algorithm, I imitated the Viterbi algorithm which finds the best
state sequence with complexity that is linear in the number of time steps.
In the book, I claimed that my algorithm was also linear in the number
time steps and that it finds the best classification sequence. While the
complexity is linear, the flawed algorithm may fail to find the best se-
quence, and in fact it may fail to find a possible sequence. For details, see
Section 6.3 of this document.

Test Suite: I have written tests using the variant of the Nose testing system
that numpy uses. Those tests are part of the new distribution. That
system revealed to me the error of the previous item.

Favor Pretty Code Over Pretty Pictures: Karl Hegbloom and I wrote com-
plex code to make the book pretty. In this version, I sacrifice appearance
of the plots if that lets me write simpler code. I do not recommend the
formatting techniques of this version to other authors because the results
are not very pretty. Neither do I recommend the techniques of the first
version because they were too complex.

Python3: Most of the new code runs under python3 exclusively. The major
exceptions are plotting scripts that use matplotlib and run under python2
because matplotlib is not compatible with python3 yet.

Numpy, Scipy, Cython, . . . The new and improved tools that have been
created since I started the first version combined with things I’ve learned
about writing code has produced much clearer code.

Sphinx: I use sphinx to format documentation embedded in the source.

Matplotlib and Xfig: I make all of the figures with matplotlib and xfig rather
than the mix of tools including gnuplot that Karl and I used for the book.
My code that uses matplotlib is ugly. While I take some credit for that
ugliness, I don’t recommend matplotlib with any enthusiasm over gnuplot.

Scons: I’ve switched from gnu-make to scons for building. I don’t recommend
scons over gnu make with any enthusiasm either.

i
i

“software” — 2013/5/15 — 7:37 — page v — #5 i
i

i
i

i
i

v

Differences

The data for most of the figures and tables in this document are not identical to
data for the figures and tables in the book. My code is different and the libraries
on which my code builds are different. Many details of the results depend on
features like random number generators. I have focused on making the new
code easier to read rather than getting it to reproduce the results of the old
code exactly. While I’ve found the old code embarrassingly difficult to read,
I am pleased to have found that it mostly runs and gives correct results. As
of 2013-02-12 the only substantial error that I’ve found in the old is the bogus
algorithm described in Chapter 6 of the book for decoding class sequences. If I
find other major flaws, I will note them in revisions to this document.

Copyright and License

SIAM owns the copyright to the LATEXsource files for the book, namely: al-
gorithms.tex, introduction.tex, appendix.tex, main.tex, toys.tex, continuous.tex,
real.tex, and variants.tex. You may obtain those files from the SIAM website
for the book, but you can only use them to see how the book was made. The
LATEXsource files are subject to the following restrictions:

• You may not use them to print a copy of the book

• You may not further distribute them

• You may not distribute modifications of the files

I (Andrew M. Fraser) and my current employer (Los Alamos National Labo-
ratory)1 own the copyright to all the other files, and we make those files available
under the terms of version 3 of the GNU General Public License as published
by the Free Software Foundation, (http://www.gnu.org/licenses/).

Structure of the Document

Chapters 1 through 6 mirror chapters in the book. The figures in those chapters
map bijectively to the figures in the corresponding chapters of the book and the
numbering is the same. While the figures in the book illustrate concepts in the
text, in this document the text explains the software that makes the figures. I
will place other material in this preface and in appendices. The first appendix
addresses the erroneous analysis of class decoding that appears in Chapter 6 of
the book.

To Do

fig:LikeLor Perhaps try for larger nstates

1The ”Los Alamos Computer Code” for this work is LA-CC-13-008.

i
i

“software” — 2013/5/15 — 7:37 — page vi — #6 i
i

i
i

i
i

vi PREFACE

Fix fig:mm:

Class-Decode: Study the performance of ad hoc algorithms for decoding class.
Write an appendix describing the study. Apply such an algorithm to the
apnea problem of Chapter 6.

Clean up EKF and put it in code/hmm Get scons to build all files in de-
rived data/laser and remove them from the repository

Write new Hview code Data for Figs. 5.1 and 5.2

i
i

“software” — 2013/5/15 — 7:37 — page 1 — #7 i
i

i
i

i
i

Chapter 1

Introduction

{chap:introduction}

1.1 Laser Example

The red trace in Fig. 1.1 plots the first 250 points in Tang’s data file LP5.DAT.
The blue trace is the result of an optimization that searches for parameters
of the model described in the book that minimizes the sum of the squared
differences between the simulation and the data. The program Laser data.py
calls the scipy.optimize.fmin powell routine to do the optimization and makes
the file data/LaserLP5. The optimization takes about 6 minutes. The script
Laser plots.py makes figs/LaserLP5.pdf from data/LaserLP5.

After finishing the optimization for Fig. 1.2, the data for Figs.1.3, 1.4, and
3.1 are made in less than a minute.

Figure 1.4 is not as nice as the figure in the book. I hope to rework the
optimization code yet again to find a stable period five orbit that matches the
data.

1.3 Discrete HMMs
{sec:intro_hmm}

Karl Hegbloom and I drew Fig. 1.5 using the xfig utility. Karl set up a method
that let us use the same drawing for Fig. 1.6 too. In his words:

Both Markov mm.pdf t and Markov dhmm.pdf t are generated from
the same .fig file. The output arcs and their labels are at depth 40
and the rest is at depth 50. When mm.pdf t is created, the space
taken up by the output arcs is blank, so we need to trim it off using
the ’-K’ switch to ’fig2dev’.

1.3.1 Example: Quantized Lorenz Time Series
{sec:QuantizedLorenz}

I used scipy.odeint or the fourth order Runge Kutta formula implemented in
Cython, to integrate the Lorenz system and make the data for Figs. 1.7-1.9. I

1

i
i

“software” — 2013/5/15 — 7:37 — page 2 — #8 i
i

i
i

i
i

2 CHAPTER 1. INTRODUCTION

0 100 200
t

50

150

250

y
(t

)

Laser

Simulation

Figure 1.1: Laser intensity measurements. The trace labeled Laser is a plot of
laser intensity measurements provided by Tang et al.. The trace labeled Simu-
lation plots a numerical simulation of the Lorenz system (1.1) with parameters
r = 21.16, s = 1.792, b = 0.3670, and measurement parameters τs = 0.1435,
Sg = 7.071, and Og = 15.16. I used the optimization procedure described in
the text to select these parameters. The simulated intensities were derived from
the state by y(t) = Sg · (x1(t))2 +Og. I specified an absolute error tolerance of
10−7 per time step for the numerical integrator. {fig:LaserLP5}

i
i

“software” — 2013/5/15 — 7:37 — page 3 — #9 i
i

i
i

i
i

1.3. DISCRETE HMMS 3

s

1.805

1.810

1.815

1.820

b
0.358

0.360

lo
g(
P

(y
25

0
1
|θ)

)

−464.5

−464.0

−463.5

Figure 1.2: Log likelihood as function of s and b. Other parameters were taken
from the vector θ̂ that maximizes the likelihood P (y250

1 |θ) (see Eqn. 1.3). {fig:LaserLogLike}

i
i

“software” — 2013/5/15 — 7:37 — page 4 — #10 i
i

i
i

i
i

4 CHAPTER 1. INTRODUCTION

−6 −4 −2 0 2 4 6
x1

12

14

16

18

20

22

24

26

28

x
3

Figure 1.3: State trajectory x̂250
1 estimated from observation sequence y250

1 .
(see Eqn. 1.4.) Components x1 and x3 of the Lorenz system (see Eqn. 1.1) are
plotted. Recovering the familiar Lorenz figure suggests both that the laser data
is Lorenz like and that the algorithm for estimating states from observations is
reasonable. {fig:LaserStates}

i
i

“software” — 2013/5/15 — 7:37 — page 5 — #11 i
i

i
i

i
i

1.3. DISCRETE HMMS 5

300 400 500 600
t

50

150

250

y
(t

)

Laser

Forecast

Figure 1.4: Forecast observation sequence. I set the noise terms η and ε to zero
and iterated Eqn. 1.2 400 times to generate the forecast ŷ650

251 . I started with the
initial condition x̂ defined by Eqn. 1.5. The forecast begins to fail noticeably
after t = 500. The failure suggests that the period five cycle in the forecast is
unstable. The laser cycle must have been stable to appear in the data. Thus
an essential characteristic of the model is wrong. {fig:LaserForecast}

1
2

v

w
1

u 1
2

1
21

2

d

1

1
3

e f
2
3

e
2
3

f

1
3

Figure 1.5: A Markov model {fig:mm}

i
i

“software” — 2013/5/15 — 7:37 — page 6 — #12 i
i

i
i

i
i

6 CHAPTER 1. INTRODUCTION

1
2

v

w
1

u 1
2

1
21

2

d

1

1
3

e f
2
3

e
2
3

f

1
3

Figure 1.6: A hidden Markov model {fig:dhmm}

have not found matplotlib to be much easier to use than gnuplot.
Figure 1.9 is the picture on the cover of the book.

1.3.2 Example: Hidden States as Parts of Speech
{sec:POSpeech}

I’ve copied Table 1.1 from the source for the book. Since the actual table of
words is the result of the new code (po speech.py), the explanations do not
match the word groups. Using different seeds for the random number generator
produces different groupings. For now, each run takes 52 minutes. In the future,
I will write the core routines in Cython which will reduce the time by an order
of magnitude.

1.3.3 Remarks
{sec:DHMMRemarks}

Figures 1.10 and 1.11 are xfig drawings.

i
i

“software” — 2013/5/15 — 7:37 — page 7 — #13 i
i

i
i

i
i

1.3. DISCRETE HMMS 7

0 1 2 3 4 5 6
τ

−10

0

10

x
1
(τ

)

0 10 20 30 40
t

1

2

3

4

y
(t

)

Figure 1.7: Generating the observations y40
1 . The curve in the upper plot depicts

the first component x1(τ) of an orbit of the Lorenz system (1.1), and the points
marked � indicate the values sampled with an interval τs = 0.15. The points in

the lower plot are the quantized values y(t) ≡
⌈
x1(t·τs)

10 + 2
⌉
, where due is the

least integer greater than or equal to u. {fig:TSintro}

0 20 40 60 80 100
t

0

2

4

6

8

10

12

s(
t)

Figure 1.8: A plot of the state sequence found by Viterbi decoding a quantized
time series from the Lorenz system. Here the number of the decoded state s(t)
is plotted against time t. Although it is hard to see any structure in the plot
because the numbers assigned to the states are not significant, Fig. 1.9 illustrates
that the decoded states are closely related to positions in the generating state
space.{fig:STSintro}

i
i

“software” — 2013/5/15 — 7:37 — page 8 — #14 i
i

i
i

i
i

8 CHAPTER 1. INTRODUCTION

Table 1.1: Words most frequently associated with each state. While I have no
interpretation for three of the states, some of the following interpretations of
the other states are strikingly successful.

1 – Adjectives

2 – Punctuation and other tokens that appear
at the end of phrases

6 – Capitalized articles and other tokens that
appear at the beginning of phrases

7 – Objective pronouns and other words with
similar functions

8 – Nouns

9 – Nouns

10 – Helping verbs

11 – Nominative pronouns

12 – Articles

13 – Conjunctions

14 – Prepositions

15 – Relative pronouns

1 work book man York books story hand years men way
2 to in not be as by with no been on
3 , and - . ; et ” & by or
4 other American first ” new moral same own whole great
5 is and was but has are have had may even
6 - X and tm ” half self but electronic rate
7 it all him them more out one life which course
8 the a his an its this their that any no
9 . ? Project ! : ; Archive * where Eyes

10 ” indeed seq Co and The or 105 1917 12
11 The In But Gutenberg ” And His A Here That
12 he it I and He they It there we you
13 of and in to for as with by or from
14 , that ; ” which who as out what (
15 ” . ,] [The and 1 A)

{tab:POS}

i
i

“software” — 2013/5/15 — 7:37 — page 9 — #15 i
i

i
i

i
i

1.3. DISCRETE HMMS 9

Figure 1.9: The relationship between the hidden states of an HMM and the
original coordinates of the Lorenz system.{fig:Statesintro}

i
i

“software” — 2013/5/15 — 7:37 — page 10 — #16 i
i

i
i

i
i

10 CHAPTER 1. INTRODUCTION

S(2) S(t) S(t+ 1)

Y (1) Y (2) Y (t+ 1)Y (t)

S(1)

Figure 1.10: Bayes net schematic for a hidden Markov model. The drawn
edges indicate the dependence and independence relations: Given S(t), Y (t) is
conditionally independent of everything else, and given S(t− 1), S(t+ 1), and
Y (t), S(t) is conditionally independent of everything else.{fig:dhmm_net}

0.1

c

0.1

b

1.0

0.9
a

1.0

a
0.9

Figure 1.11: An HMM that cannot be represented by a Markov model of any
order. Consider the string of observations “b, a, a, . . . , a, a, a”. For each “a” in
the string, the previous non-“a” observation was “b”. Since the model will not
produce another “b” before it produces a “c”, the next observation can be either
a “c” or another “a”, but not a “b”. Because there is no limit on the number
of consecutive “a’s” that can appear, there is no limit on how far back in the
observation sequence you might have to look to know the probabilities of the
next observation.{fig:nonmm}

i
i

“software” — 2013/5/15 — 7:37 — page 11 — #17 i
i

i
i

i
i

Chapter 2

Basic Algorithms

{chap:algorithms}
2.1 The Forward Algorithm

{sec:forward}
Figure 2.1 is an xfig drawing that invokes many LATEXcommands defined in the
file software.tex.

2.3 The Viterbi Algorithm
{sec:viterbi}

Figure 2.2 is straight LATEXsource that is part of the file software.tex. Figure 2.3
is an xfig drawing that invokes commands defined in software.tex.

2.3.1 General Decoding
{sec:GenDecode}

2.3.2 MAP Sequence of States or Sequence of MAP States?
{sec:sequenceMAP}

Figure 2.4 is an xfig drawing.

2.4 The Baum-Welch Algorithm
{sec:baum_welch}

Reestimation

Table 2.1 is somewhat obscure straight LATEX.
Fig. 2.5 is also obscure straight LATEX.

2.4.2 Remarks
{sec:AlgApp}

Multiple Maxima
{sec:MultiMax}

2.5 The EM algorithm
{sec:EM}

11

i
i

“software” — 2013/5/15 — 7:37 — page 12 — #18 i
i

i
i

i
i

12 CHAPTER 2. BASIC ALGORITHMS

α
(s

1 ,t−
1
)

P (s
1 |y

t−
1

1)
P (s

1 ,y
(t)|y

t−
1

1)
α

(s
1 ,t)

α
(s

2 ,t)
P

(y
(t)|y

t−
1

1
)

P (s
2 ,y

(t)|y
t−

1
1)

P (s
2 |y

t−
1

1)
α

(s
2 ,t−

1)

α
(s

3 ,t−
1)

P (s
3 |y

t−
1

1)
P (s

3 ,y
(t)|y

t−
1

1)
α

(s
3 ,t)

W
eig

h
ted

su
m

o
f

p
rio

r
α

’s
E

q
n

.
2
.4

c

M
u

ltip
ly

o
b

serva
tio

n
p

ro
b

a
b

ility
E

q
n

.
2
.5

b

A
d

d
,

to
g
et

γ
(t),

P (y
(t)|y

t−
1

1)
E

q
n

.
2
.6

N
orm

alize
n

ew
α

’s
E

q
n

.
2.7

F
ig

u
re

2.1:
D

ep
en

d
en

cy
relatio

n
s

in
th

e
fo

rw
a
rd

a
lg

o
rith

m
(S

ee
E

q
n

s.
2
.4

-2
.7

in
th

e
tex

t).
T

h
e

fi
gu

re
in

d
icates

th
e

calcu
lation

s
th

e
algorith

m
ex

ecu
tes

to
in

corp
o
ra

te
th

e
o
b

serva
tio

n
a
t

tim
e
t

fo
r

a
th

ree
sta

te
m

o
d

el.
{
f
i
g
:
f
o
r
w
a
r
d}

i
i

“software” — 2013/5/15 — 7:37 — page 13 — #19 i
i

i
i

i
i

2.5. THE EM ALGORITHM 13

Initialize:
for each s

νnext(s) = log
(
PY (1),S(1) (y(1), s)

)
Iterate:

for t from 2 to T − 1
Swap νnext ↔ νold

for each snext

for each sold

ω(sold, snext) = ν(sold, t) + log (P (snext|sold))
+ log (P (y(t+ 1)|snext))

Find best predecessor
B(snext, t+ 1) = argmaxsold ω(sold, snext)

Update ν
νnext(snext) = ω(B(snext, t+ 1), snext)

Backtrack:
s̄ = argmaxs νnext(s)
ŝ(T) = s̄
for t from T − 1 to 1

s̄ = B(s̄, t+ 1)
ŝ(t) = s̄

Figure 2.2: Pseudocode for the Viterbi Algorithm {fig:viterbi}

Table 2.1: Summary of reestimation formulas.
Note that formulas for w(s, t) and w̃(s̃, s, t) appear in
Eqns. 2.20 and 2.22 respectively.

Description Expression New Value

Initial State
Probability

PS(1)|θ(n+1) (s|θ(n+ 1)) w(s, 1)

State Tran-
sition Prob-
ability

PS(t+1)|S(t),θ(n+1) (s̃|s, θ(n+ 1))
∑T−1
t=1 w̃(s̃,s,t)∑

s′∈S
∑T−1
t=1 w̃(s′,s,t)

Conditional
Observation
Probability

PY (t)|S(t),θ(n+1) (y|s, θ(n+ 1)) ∑
t:y(t)=y w(s,t)∑

t w(s,t)
{tab:reestimation}

i
i

“software” — 2013/5/15 — 7:37 — page 14 — #20 i
i

i
i

i
i

14 CHAPTER 2. BASIC ALGORITHMS

B
(s

1 ,t)
=

a
rg

m
a
x
s̃

lo
g

(P
(s

1 |s̃))
+
ν

(s̃,t−
1
)

B
(s

2 ,t)
=

a
rg

m
a
x
s̃

lo
g

(P
(s

2 |s̃))
+
ν

(s̃,t−
1
)

B
(s

3 ,t)
=

a
rg

m
a
x
s̃

lo
g

(P
(s

3 |s̃))
+
ν

(s̃,t−
1
)

ν
(s

1 ,t)

ν
(s

2 ,t)

ν
(s

1 ,t−
1)

ν
(s

3 ,t−
1
)

ν
(s

2 ,t−
1
)

ν
(s

3 ,t)

F
o
r

ea
ch

sta
te
s

fi
n

d
th

e
b

est
p

red
ecesso

r
s̃,

i.e.,
th

e
o
n

e
th

a
t

m
a
x
im

izes
lo

g
(P

(s|s̃))
+
ν

(s̃,t−
1
).

T
h

e
b

o
ld

er
lin

es
in

d
ica

te
b

est
p

red
ecesso

rs.

F
or

each
state

s
calcu

late
ν

(s,t)
b
y

in
clu

d
in

g
th

e
con

d
ition

al
p

rob
ab

ility
of

th
e

ob
servation

y
(t),

i.e.,
ν

(s,t)
=

log
(P

(y
(t)|s))

+
log

(P
(s|B

(s,t)))
+
ν

(B
(s,t),t−

1).

F
igu

re
2.3

:
D

ep
en

d
en

cy
rela

tio
n

s
in

th
e

V
iterb

i
a
lg

o
rith

m
.

{
f
i
g
:
v
i
t
e
r
b
i
B}

i
i

“software” — 2013/5/15 — 7:37 — page 15 — #21 i
i

i
i

i
i

2.5. THE EM ALGORITHM 15

h

ge

f

0.9 0.9

0.9

1.00.1

1.0

0.1 0.8 0.2

a
b

b c
b

1.0

0.11.0

d

Figure 2.4: HMM used to illustrate that the maximum a posteriori sequence of
states is not the same as the sequence of maximum a posteriori states. {fig:sequenceMAP}

i
i

“software” — 2013/5/15 — 7:37 — page 16 — #22 i
i

i
i

i
i

16 CHAPTER 2. BASIC ALGORITHMS

Notation:

θ(n) is the model, or equivalently the set of parameters, after n iterations
of the Baum-Welch algorithm.

αn is the set of conditional state probabilities calculated on the basis of
the nth model and the data yT1 . See Eqns. 2.2 and 2.7.

αn ≡
{
PS(t)|Y t1 ,θ(n)

(
s|yt1, θ(n)

)
: ∀s ∈ S & 1 ≤ t ≤ T

}
βn is a set of values calculated on the basis of the nth model θ(n) and
the data yT1 . See Eqns. 2.11 and 2.12.

βn ≡
{
PY Tt+1|S(t)

(
yTt+1|s

)
P
(
yTt+1|yt1

) : ∀s ∈ S & 1 ≤ t < T

}

γn is the set of conditional observation probabilities calculated on the
basis of the nth model θ(n) and the data yT1 . See Eqns. 2.3 and 2.6.

γn ≡
{
P
(
y(t)|yt−1

1 , θ(n)
)

: 2 ≤ t ≤ T
}

Initialize:
Set n = 1 and choose θ(1)

Iterate:
(αn,γn)← forward(yT1 , θ(n)) See Section 2.1 page 20
βn ← backward(γn, y

T
1 , θ(n)) See Section 2.2 page 25

θ(n+ 1)← reestimate
(
yT1 ,αn,βn,γn, θ(n)

)
See Table 2.2 page 33

n← n+ 1
Test for completion

Figure 2.5: Summary and pseudo-code for optimizing model parameters by
iterating the Baum-Welch algorithm. {fig:train}

i
i

“software” — 2013/5/15 — 7:37 — page 17 — #23 i
i

i
i

i
i

2.5. THE EM ALGORITHM 17

100 101 102 103

n

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

lo
g
(P

(y
T 1
|θ

(n
))

T

Figure 2.6: Convergence of the Baum-Welch algorithm. Here I have plotted
log(P(yT1 |θ(n)))

T (the log likelihood per step) as a function of the number of iter-
ations n of the Baum-Welch algorithm for five different initial models θ(1). I
used the same sequence of observations yT1 that I used for Fig. 1.9, and I used
different seeds for a random number generator to make the five initial models.
Note the following characteristics: The five different initial models all converge
to different models with different likelihoods; the curves intersect each other as
some models improve more with training than others; convergence is difficult to
determine because some curves seem to have converged for many iterations and
later rise significantly. Although it appears that three of the initial models all
converge to -0.5, close examination of the data suggests that they are converging
to different models with different log likelihoods per step. {fig:TrainChar}

i
i

“software” — 2013/5/15 — 7:37 — page 18 — #24 i
i

i
i

i
i

18 CHAPTER 2. BASIC ALGORITHMS

−6 −4 −2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25
θ(1)

θ

−6 −4 −2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25
θ(2)

Figure 2.7: Two iterations of the EM algorithm. I use the algorithm to search for
the parameters of Eqn. 2.49 that maximize the likelihood of the ten simulated
observations that appear above in the row labeled y(t). The triple of rows
labeled θ(1) report the weighting calculated using Eqn. 2.50 used in Eqns. 2.51
to recalculate the conditional means, µ1 and µ2, for θ(2) in the M step, and the
next triple of rows, labeled θ(2), report the same quantities for the calculation
of θ(3). The parameters of the first three models appear in the row just below
the boxed table. θ(3) is the triple of parameters produced by two iterations
of the EM algorithm, λ = 0.603, µ1 = −2.028, µ2 = 1.885. On the axes of
the upper plot, I illustrate P (x|θ) as defined in Eqn. 2.49 for two sets of model
parameters: The dashed line depicts θ = (0.5,−2, 2), the distribution used to
simulate the data, and the solid line depicts θ(1) = (0.5,−1, 1), the starting
distribution I chose for the EM algorithm. On the bottom axes I plot the
simulated observations as marks on the abscissa and P (y|θ(3)) as a solid line. {fig:GaussMix}

i
i

“software” — 2013/5/15 — 7:37 — page 19 — #25 i
i

i
i

i
i

2.5. THE EM ALGORITHM 19

2.5.2 Convergence

A contrived example
{sec:contrived}

θ0.2
0.4

0.6
0.8

θ ′

0.3

0.5

0.7

Q
(θ ′, θ)

−4.5

−4.0

−3.5

−3.0

−2.5

0.00 0.25 0.50 0.75 1.00
θ

0.00

0.25

0.50

0.75

1.00

T
(θ

)

slope 1 referece
T (θ)

Figure 2.8: An illustration of the EM algorithm for an experiment in which a
coin is thrown four times, first a head is observed (y(1) = 1), then a tail is
observed (y(2) = 0), and finally two results are unobserved with sh and st being
the number of unobserved heads and tails respectively. The goal is to find the
maximum likelihood value of θ, the probability of heads. The log likelihood
function for the complete data is Lθ = (sh + 1) log(θ) + (st + 1) log(1− θ). The
auxiliary function Q(θ′, θ) = (1 + 2θ) log(θ′) + (1 + 2(1− θ)) log(1− θ′) appears
on the left, and the map T (θ) appears on the right. Note that θ∗ = 1

2 is the
fixed point of T (where the plot intersects the slope 1 reference line) and it is
stable because the slope of T is less than one. {fig:EM}

i
i

“software” — 2013/5/15 — 7:37 — page 20 — #26 i
i

i
i

i
i

20 CHAPTER 2. BASIC ALGORITHMS

i
i

“software” — 2013/5/15 — 7:37 — page 21 — #27 i
i

i
i

i
i

Chapter 3

Variants and
Generalizations

{chap:variants}
Laser plots.py uses pylab to make Fig. 3.1 directly from Tang’s file data/LP5.DAT.

3.1 Gaussian Observations
{sec:gaussian}

3.1.1 Independent Scalar Observations
{sec:ScalarGaussian}

3.1.2 Singularities of the likelihood function and regular-
ization

{sec:regularization}
Figure 3.3 is an xfig drawing.

3.2 Related Models
{sec:related}

It takes 11 minutes for VStatePic.py to make the state data for Fig. 3.4 from
data/lorenz.xyz.

21

i
i

“software” — 2013/5/15 — 7:37 — page 22 — #28 i
i

i
i

i
i

22 CHAPTER 3. VARIANTS AND GENERALIZATIONS

0 5 50 93 100
x

0

10

20

C
ou

nt
s

Figure 3.1: Histogram of Tang’s laser measurements. Even though neither y = 5
nor y = 93 occurs in y600

1 , it is more plausible that y = 93 would occur in future
measurements because of what happens in the neighborhood. Discarding the
numerical significance of the bin labels would preclude such an observation. {fig:LaserHist}

i
i

“software” — 2013/5/15 — 7:37 — page 23 — #29 i
i

i
i

i
i

3.2. RELATED MODELS 23

(a)

0.93

0.13 0.87

0.07

µ = −1
σ2 = 1

µ = 1
σ2 = 1

(b)

0 25 50 75 100
t

0

1

S
(t

)

(c)

0 25 50 75 100
t

−4

0

4

y
(t

)

(d)

0 25 50 75 100
t

0

1

S
(t

)
(e)

0.5

0.5 0.5

0.5

µ = −2
σ2 = 2

µ = 2
σ2 = 2

(f)

0.92

0.12 0.88

0.08

µ = −0.74
σ2 = 1.09

µ = 1.17
σ2 = 1.27

Figure 3.2: An HMM with scalar Gaussian observations. A state diagram ap-
pears in (a). The half-life of the first state is about ten and the half life of
the second state is about five, i.e., 0.9310 ≈ 0.875 ≈ 0.5. A simulated state se-
quence and observation sequence appear in (b) and (c) respectively. Using the
model parameters from (a) and the observation sequence from (c), the Viterbi
algorithm estimates the state sequence that appears in (d) which is satisfyingly
similar to the state sequence in (b). Finally, starting from the initial model
depicted in (e) and using the observation sequence depicted in (c), 50 itera-
tions of the Baum-Welch algorithm produces the model depicted in (f) which
is satisfyingly similar to (a). {fig:ScalarGaussian}

(a)

0.5

0.5 0.5

0.5

µ = 0.0
σ2 = 16

µ = 3.6
σ2 = 0.016

(b)

0.99

1.0 0.0

0.01

µ = −0.09
σ2 = 1.90

µ = 3.62
σ2 = 1.7× 10−6

Figure 3.3: An illustration of trouble with maximum likelihood. Here I have
used the same implementation of the Baum-Welch algorithm that I used to
produce Fig. 3.2(f), but rather than starting with the model in Fig. 3.2 (c), I
started the algorithm with the initial model depicted in (a) above. Six iterations
of the algorithm produced the suspicious model depicted in (b) above. {fig:MLEfail}

i
i

“software” — 2013/5/15 — 7:37 — page 24 — #30 i
i

i
i

i
i

24 CHAPTER 3. VARIANTS AND GENERALIZATIONS

Figure 3.4: Plots of decoded states using an HMM with vector autoregressive
observations. Here the observations are a trajectory of three dimensional state
vectors from the Lorenz system. In each state the observation y(t) is modeled
as a Gaussian with a mean that is an affine (linear plus fixed offset) function
of the observation y(t− 1). The empty boxes correspond to states that do not
appear in the decoded sequence of states. In comparing with Fig. 1.9 which
used a model with coarsely quantized observations, notice that large regions
near the fixed points at centers of the spirals are represented by a single state.
These large regions occur because the dynamics are approximately linear over
their extents. {fig:VARGstates}

i
i

“software” — 2013/5/15 — 7:37 — page 25 — #31 i
i

i
i

i
i

Chapter 5

Performance Bounds and a
Toy Problem

{chap:toys}
Lorenz Example

I make Figs. 5.1 and 5.2 from the files Save Hview T 100, Save Hview T 118,
and Save Hview T 119 which I made using the old version of GUI program
Hview.py. You can use the new version to make similar files and figures, but I
like the way the old ones look. The script ToyA.py makes the figures from the
data.

5.4 Benettin’s Procedure for Calculating Lya-
punov Exponents Numerically

{sec:Benettin}
Figure 5.4 is a boring collection of straight LATEX and three xfig drawings.

5.6 Approaching the Bound
{sec:approach}

Fig. 5.6 from the data. Note: To make this figure you must have at least two
gigabytes of RAM.

25

i
i

“software” — 2013/5/15 — 7:37 — page 26 — #32 i
i

i
i

i
i

26 CHAPTER 5. PERFORMANCE BOUNDS

100 150 200
t

−20

0

20

y
(t

)

100 150 200

−0.06

0.00

0.06

0.12
(y(t)− µγ(t))

σγ(t)

100 150 200
t

−6

−4

−2

0

2

lo
g
(P

γ
(y

(t
))

Figure 5.1: Extended Kalman filter for one step forecasting with simulation
parameters:
τs = 0.25 Sample interval
ση = 10−6 Standard deviation of state noise
σε = 0.01 Standard deviation of measurement noise
∆ = 10−4 Measurement quantization

A time series of observations appears in the upper plot. The middle plot
characterizes the one-step forecast distributions Pγ (y(t)) ≡ P

(
y(t)|yt−1

1 , θ
)

=

N
(
µγ(t), σ2

γ(t)
)∣∣
y(t)

; the first trace is the standard deviations of the forecasts

and the second trace is the difference between the actual observation and the
mean of the forecast. The logs of the likelihoods of the forecasts, log(Pγ (y(t))),
appear in the bottom plot. Note: The data comes from old software not
in hmmds3. {fig:ToyTS1}

i
i

“software” — 2013/5/15 — 7:37 — page 27 — #33 i
i

i
i

i
i

5.6. APPROACHING THE BOUND 27

−0.10 −0.05 0.00 0.05
x1

0.001

0.002

0.003

0.004

0.005

0.006

0.007

x
3

+9.761 t = 118

forecast
update

−0.30 −0.25 −0.20
x1

0.001

0.002

0.003

0.004

0.005

0.006

0.007

x
3

+5.015 t = 119

forecast
update

Figure 5.2: These plots illustrate dynamical stretching increasing the vari-
ance of the conditional distribution in state space corresponding to time
steps 118 and 119 in Fig. 5.1. In each plot, the larger ellipse represents
the forecast state distribution Pa (x(t)) ≡ P

(
x(t)|yt−1

1 , θ
)

= N (µa,Σa)|x(t)

and the smaller ellipse represents the updated state distribution Pα (x(t)) ≡
P (x(t)|yt1, θ) = N (µα,Σα)|x(t). For each distribution, an ellipse depicts the

level set (x − µ)>Σ−1(x − µ) = 1 in the x1 × x3 plane. Since the observations
provide information about the value of x1, the updated distributions vary less
in the x1 direction than the corresponding forecasts. To aid comparisons, the
x1 range is 0.2 and the x3 range is 0.01 in each plot. In the x1 direction, the
standard deviation of the updated distribution Pα(x(t)) at t = 118 (the smaller
of the two ellipses on the left) is 0.007. The dynamics map that distribution to
the forecast distribution Pa(x(t)) at t = 119 (the larger of the two ellipses on
the right) for which the standard deviation in the x1 direction is more than ten
times larger. Note: The data comes from old software not in hmmds3. {fig:ToyStretch}

i
i

“software” — 2013/5/15 — 7:37 — page 28 — #34 i
i

i
i

i
i

28 CHAPTER 5. PERFORMANCE BOUNDS

0.0 0.1 0.2 0.3 0.4 0.5
τs

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

−
ĥ

σε = 10−4

ridge
theory

log10
(σ̃ε)

−5.5
−5.0

−4.5
−4.0

−3.5

τs

0.1
0.2

0.3
0.4

0.5

−
ĥ

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

Figure 5.3: Average log likelihood of one step forecasts as a function of time
step τs and filter parameter σ̃ε. To simulate measurements for this figure, I used
the parameters:
ση = 10−6 Standard deviation of state noise
σε = 10−10 Standard deviation of measurement noise
∆ = 10−4 Measurement quantization
T = 5, 000 Number of samples

For both plots, the vertical axis is the average log likelihood of the one-step fore-
cast −ĥ ≡ 1

T

∑T
t=1 log

(
P
(
y(t)|yt−1

1 , θ
))

. On the left I plot −ĥ as a function of
both τs, the time step, and σ̃ε, the standard deviation of the measurement noise
model used by the Kalman filter. On the right “◦”indicates the performance
of filters that use measurement noise models that depend on the sampling time
through the formula σ̃ε(τs) = 100.4τs−4.85, which closely follows the ridge top in
the plot on the left, “�”indicates the performance of filters that use σ̃ε = 10−4,
i.e. the measurement quantization level, and the solid line traces Eqn. 5.2 in
the text. {fig:ToyH}

i
i

“software” — 2013/5/15 — 7:37 — page 29 — #35 i
i

i
i

i
i

5.6. APPROACHING THE BOUND 29

[[
e1
] [

e2
]]

R
[[
e1
] [

e2
]]

QR
[[
e1
] [

e2
]]

[
3 0.25
−4 0

][
5 0.15
0 0.2

][
1 0
0 1

]

Figure 5.4: The action of the Q R factors of a matrix on a unit square. Here

A =

[
3 0.25
−4 0

]
, Q =

[
0.6 0.8
−0.8 0.6

]
, and R =

[
5 0.15
0 0.2

]
. R stretches the

x component by a factor of five and shears y components in the x direction
and shrinks them by a factor of five with a net effect of preserving areas. Q
simply rotates the stretched figure. Each parallelepiped in the bottom row is
constructed from the columns of the corresponding matrix in the middle row.
The algebraic formulas for those vectors appear in the top row. Note that R
determines the changes in length and area, and that Q does not effect either. {fig:QR}

i
i

“software” — 2013/5/15 — 7:37 — page 30 — #36 i
i

i
i

i
i

30 CHAPTER 5. PERFORMANCE BOUNDS

0 200 400 600 800 1000

0.6

0.8

1.0

1.2

1.4

λ
(t

)

95%
sample
sample
sample
5%

0 200 400 600 800 1000
t

0.6

0.8

1.0

1.2

1.4

λ
(t

)

95%
sample
sample
sample
5%

Figure 5.5: Lyapunov exponent calculation for the Lorenz system. In the upper
part, the three lighter traces are plots of 1

T

∑T
t=1 log (|r1,1(t)|) and the heavier

traces the 5% and 95% limits on 1,000 separate runs. The lower part is the same
except that |r1,1(t)| is augmented by a noise term with amplitude

ση
∆ = 0.01 (See

Eqn. 5.49. The shapes of the traces are almost unchanged except for uniform
shift up of about 0.03. I conclude that a test model that is the same as the
generating model except that the state noise is

ση
∆ = 0.01 would have a cross

entropy of about 0.936 nats, while the largest Lyapunov exponent is λ̂1 ≈ 0.906
nats. {fig:benettin}

i
i

“software” — 2013/5/15 — 7:37 — page 31 — #37 i
i

i
i

i
i

5.6. APPROACHING THE BOUND 31

102 103 104 105

nstates

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ĥ
/n

at
s

Figure 5.6: Entropy gap, δ̂µ||θ vs number of states in HMMs. The upper trace

plots estimates of cross entropy ĥ(B, F, µ||θ) for a sequence of HMMs vs the
number of discrete state in the models. I built the models using actual Lorenz
state space trajectories as described in the text. The lower trace is an estimate
of the entropy rate, ĥ(F, µ)) = λ̂1, of the true process based on Lyapunov
exponents estimated by the Benettin procedure. The distance between the
curves is the entropy gap δ̂µ||θ. The gap seems to be going to zero, suggesting
that an HMM with enough states might perform at least as well as any other
model based on any other technology. Each model was built using the same
sample trajectory of 8,000,000 points in the original state space, and the cross
entropy estimates are based on a test sequence of 10,000 observations. {fig:LikeLor}

i
i

“software” — 2013/5/15 — 7:37 — page 32 — #38 i
i

i
i

i
i

32 CHAPTER 5. PERFORMANCE BOUNDS

i
i

“software” — 2013/5/15 — 7:37 — page 33 — #39 i
i

i
i

i
i

Chapter 6

Obstructive Sleep Apnea

{chap:apnea}
6.1 The Challenge and the Data

{sec:challenge}
6.1.1 The Data

{sec:data}

6.2 First Classification Algorithms and Two Use-
ful Features

{sec:NVG}
6.2.2 Nonlinear Dynamics

{sec:NLD}
6.2.3 The Excellent Eye of Dr. McNames

{sec:mcnames}

33

i
i

“software” — 2013/5/15 — 7:37 — page 34 — #40 i
i

i
i

i
i

34 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

−10

0

10

20

30

E
C
G

−10

0

10

O
N
R

0:58 0:59

60

75

90

S
pO

2

Figure 6.1: A segment of record a03. Two cycles of a large apnea induced
oscillation in SpO2 are drawn in the lower plot. The middle plot is the oronasal
airflow signal, and the upper plot is the ECG (units of both ONR and ECG
are unknown). The time axis is marked in hours:minutes. Notice the increased
heart rate just after 0:58 and just before 0:59. {fig:a03erA}

i
i

“software” — 2013/5/15 — 7:37 — page 35 — #41 i
i

i
i

i
i

6.2. FIRST CLASSIFICATION ALGORITHMS AND TWOUSEFUL FEATURES35

−10

0

10

20

30

E
C
G

−10

0

10

O
N
R

1:10 1:11 1:12

60

75

90

S
pO

2

Figure 6.2: A segment of record a03 taken during a period of normal respiration.
Signals the same as in Fig. 6.1. {fig:a03erN}

i
i

“software” — 2013/5/15 — 7:37 — page 36 — #42 i
i

i
i

i
i

36 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

45

55

65

75

85

H
R

0:55 1:00 1:05

60

70

80

90

100

S
pO

2

Figure 6.3: A segment of record 03 at the end of an episode of apnea with
indications in both the SpO2 signal and the heart rate (HR) signal. The expert
marked the time before 1:00 as apnea and the time afterwards as normal. {fig:a03erHR}

i
i

“software” — 2013/5/15 — 7:37 — page 37 — #43 i
i

i
i

i
i

6.2. FIRST CLASSIFICATION ALGORITHMS AND TWOUSEFUL FEATURES37

1:55 2:00 2:05
40

60

80

100

a
01

H
R

9:30 9:35
40

60

80

a
12

H
R

Figure 6.4: Nonlinear effects: The upper plot seems to be a period two oscilla-
tion. The lower plot is approximately sawtooth. {fig:ApneaNLD}

i
i

“software” — 2013/5/15 — 7:37 — page 38 — #44 i
i

i
i

i
i

38 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

−5.0
0.0
5.0

10.0
15.0

50 100 150 200
N

A

Figure 6.5: Information about respiration in high frequency phase variations.
This is the a11 record roughly between minutes 40 and 225. The upper plot is
heart rate (bandpass filtered 0.09-3.66 cpm), the middle plot is a spectrogram of
the phase jitter in the heart rate, and the lower plot is the expert classification.
A single band of spectral power between about 10 and 20 cpm without much
power below the band in the spectrogram indicates normal respiration. {fig:sgram}

i
i

“software” — 2013/5/15 — 7:37 — page 39 — #45 i
i

i
i

i
i

6.3. DECODING SEQUENCES OF CLASSIFICATIONS 39

6.3 Decoding Sequences of Classifications
{sec:V4Class}

In the book I presented the algorithm described in Fig. 6.6 for finding the best
classification sequence,

ĉT1 ≡ argmax
cT1

P (yT1 , c
T
1),

given an observation sequence yT1 . I claimed that the number of computations
required is a linear function of T . In 2013, as I was developing a test suite
for a new version of the software, I discovered a configuration for which the
algorithm failed to find a possible classification sequence even though it was
using the model that generated the test data.

Examining the failure, I discovered that for each of the “best” class histories
ending in each of the classes at a particular time t, the conditional probability
of a particular state s given that class history was 0. However, at time t + 1,
the only state that could produce y(t + 1) required that S(t) = s. Thus the
algorithm calculated P (yt1, ĉ

t
1) = 0 and died.

I had designed the algorithm thinking that the class sequence was Markov
and that future evidence could not change what was the best history leading to
any class. The following drawing makes my error obvious.

yt+1 yt+2yt

st

ct

st+1

ct+1 ct+2

st+2

Blocking out st+1 separates the past from the future, but blocking out ct+1

doesn’t.
Thus to avoid discarding a class history that may at later times become the

first portion of the best class sequence, one may need to keep a number of class
histories that is exponential in sequence length t. That is too many to retain
for most realistic applications.

6.3.1 Finding a Pretty Good Class Sequence
{sec:prettygood}

Rather than finding the best class sequence given a sequence of observations yT1 ,
I now seek a good one using the following ideas. The ideas yield performance
similar to that described in the book when applied to the apnea problem. At
each time t, I keep a limited collection of class histories which I build in the
following three steps:

i
i

“software” — 2013/5/15 — 7:37 — page 40 — #46 i
i

i
i

i
i

40 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

Step 1, Propagate and Sort: I take the histories I’ve retained at time t− 1
and use all possible successors to create a list of histories at time t, then
I sort those histories by P (yt1, c

t
1).

Step 2, Prune: Initially, I limit the collection using the following criteria:

• If there are two histories act1 and bct1 with P (si, y
t
1,
b ct1) ≤ P (si, y

t
1,
a ct1)∀si,

then I drop bct1.

• The total number of histories is at most Nmax

• I don’t keep histories ct1 if
P (yt1,c

t
1)

P (yt1,c̄
t
1)
< Rmin where c̄t1 is the best class

history in the sorted list.

Step 3, Augment: For each state s(t) that is impossible given the histories
saved so far, if there are discarded histories for which s(t) is possible, I
save the one that comes first in the sorted list.

Initialize:
for each c

νnext(c) = log
(∑

s g(s, C)PY (1),S(1) (y(1), s)
)

Iterate:
for t from 1 to T

Swap νnext ↔ νold

for each cnext

Find best predecessor
cbest = argmaxcold (νold(cold) + log (

∑
s g(s, cbest)f(t+ 1, s, cbest)))

Update ν
νnext(cnext) = νold(cbest) + log (

∑
s g(s, cbest)f(t+ 1, s, cbest))

Update predecessor array
Predecessor[cnext, t] = cbest

Update φ
for s in cnext

Assign φnext(s, cnext) using Eqn. 6.7

Backtrack:
ct1 = ĉt1(c̄) , where c̄ = argmaxc νnext(c) at t = T

Figure 6.6: This algorithm does not work! In the book, this figure was
entitled Pseudocode for the Viterbi algorithm for class sequences.{fig:viterbiC}

i
i

“software” — 2013/5/15 — 7:37 — page 41 — #47 i
i

i
i

i
i

6.4. ASSEMBLING THE PIECES 41

P
S

D

µC
µN
µA

0 50 100 150 200 250
cpm

P
S

D

v1

v2

C

N

A

Figure 6.7: Linear discriminant analysis of phase jitter periodograms. The plot
in the upper left, shows the following mean periodograms: µC , the mean for
the c records; µN , the mean of the minutes that the expert classified as normal
in the a records; and µA, the mean of the minutes that the expert classified as
apnea in the a records. The lower left plot shows the basis vectors that result
from the linear discriminant analysis. Scatter plots of the three classes projected
on the basis (v1, v2) appear on the right.{fig:LDA}

6.4 Assembling the Pieces
{sec:Pieces}

6.4.1 Extracting a Low Pass Filtered Heart Rate
{sec:LPHR}

6.4.2 Extracting Respiration Information
{sec:RESP}

6.4.3 Classifying Records
{sec:ClassRec}

6.4.4 Model Topology and Training Data
{sec:topology}

Figure 6.9 is a simple xfig drawing.

6.4.5 Tunable Parameters
{sec:tune}

It takes a long time make the data for Fig. 6.10. To let readers avoid that
delay, I’ve included the data in the source package. If you want to build the

i
i

“software” — 2013/5/15 — 7:37 — page 42 — #48 i
i

i
i

i
i

42 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

−2 0 2 4 6 8

llr

1.5

2.0

2.5

3.0

R

a
b
c
x

R+ llr
2 = 1.82

R+ llr
2 = 2.60

Figure 6.8: The first pass classifier. I’ve plotted the location of each record
using the log likelihood ratio llr and the ratio statistic R. Records to the left of
the line 2.39− llr

2 are in the L group. Records to the right of the line 2.55− llr
2

are in the H group. And those in between are in the M group. {fig:pass1}

data, simply remove data/PFsurveyH, make data/PFsurveyH and copy it to
data/PFsurvey.

6.4.6 Results
{sec:results}

The results in Table 6.1 are part of the typed in LATEXsource. I should write
code that creates a file of results and then import the results into the text.

Table 6.2 is a copy of the table in the book. It does not reflect the perfor-
mance of the new code.

i
i

“software” — 2013/5/15 — 7:37 — page 43 — #49 i
i

i
i

i
i

6.4. ASSEMBLING THE PIECES 43

AP22AP12

AP11 AP21

AI1

AH

AI2

NI1NHNI4

NP11

NI3 NI2

NP12

AP12

AP11

AH

AI1

NI1NH

NP11

NI3 NI2

NP12

ModH ModM and ModL

Figure 6.9: Structure of HMMs for minute by minute classification in the second
pass of my procedure. I used the structure on the left for those records classified
as H on the first pass and the structure on the right for those records classified
as M or L on the first pass. {fig:structure}

i
i

“software” — 2013/5/15 — 7:37 — page 44 — #50 i
i

i
i

i
i

44 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

Pow
er

2

4

6

8

10

12

Fudge0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fr
ac

.
R

ig
ht

0.74

0.76

0.78

0.80

0.82

Figure 6.10: The response of classification performance to changes in Pow and
Fudge. I’ve plotted the performance of ModH trained and evaluated on the H
group of records. As described in the text, Pow governs the relative weighting
of the low pass heart rate signal to the respiration characteristics and Fudge
is a bias for choosing the normal classification. The Z axis is the fraction of
minutes classified correctly. It takes about 3.75 days to make the data for this
plot. {fig:PFsurvey}

i
i

“software” — 2013/5/15 — 7:37 — page 45 — #51 i
i

i
i

i
i

6.4. ASSEMBLING THE PIECES 45

Table 6.1: Performance with tuned values of Fudge and Pow on training records.
I’ve sorted the list in order of how well the code classified each of the minutes
in each record. For each record, the number in the column labeled N → A is
the number of minutes labeled as normal by the expert that the code labeled
as apnea. The interpretations of the other columns are similar.

Record N → N N → A A→ N A→ A % Right

a11 198 46 138 84 0.6052
b02 255 169 14 79 0.6460
a06 276 27 140 66 0.6719
a08 197 114 24 165 0.7240
b01 362 105 2 17 0.7798
a07 96 93 12 309 0.7941
a18 37 14 82 356 0.8037
b03 296 71 13 60 0.8091
a03 175 98 0 246 0.8112
a20 184 10 78 237 0.8271
a15 91 50 36 332 0.8310
a05 147 30 44 232 0.8366
a16 140 21 51 269 0.8503
a13 213 38 28 215 0.8664
a09 90 24 39 342 0.8727
a10 404 13 49 50 0.8798
a14 69 57 2 381 0.8841
a17 302 24 32 126 0.8843
a02 72 36 19 401 0.8958
a19 289 8 30 174 0.9242
a12 14 29 3 530 0.9444
b04 418 0 10 0 0.9766
a01 11 8 0 470 0.9836
a04 35 4 2 451 0.9878
c07 424 0 4 0 0.9907
c05 462 0 3 0 0.9935
c09 465 0 2 0 0.9957
c10 429 0 1 0 0.9977
c03 452 1 0 0 0.9978
c06 466 0 1 0 0.9979
c02 500 0 1 0 0.9980
c01 483 0 0 0 1.0000
c04 481 0 0 0 1.0000
c08 513 0 0 0 1.0000

sum 9046 1090 860 5592 0.8824{tab:result1}

i
i

“software” — 2013/5/15 — 7:37 — page 46 — #52 i
i

i
i

i
i

46 CHAPTER 6. OBSTRUCTIVE SLEEP APNEA

Table 6.2: Here are the scores described in this chapter interspersed with the top
scores from the CINC2000 website (http://www.physionet.org/challenge/
2000/top-scores.shtml).

Score Entrant Entries

92.62 J McNames, A Fraser, and A Rechtsteiner Portland State
University, Portland, OR, USA

4

92.30 B Raymond, R Cayton, R Bates, and M Chappell Birm-
ingham Heartlands Hospital, Birmingham, UK

8

89.36 P de Chazal, C Henehan, E Sheridan, R Reilly, P Nolan,
and M O’Malley University College - Dublin, Ireland

15

87.56 M Schrader, C Zywietz, V von Einem, B Widiger, G
Joseph Medical School Hannover, Hannover, Germany

9

87.30 MR Jarvis and PP Mitra Caltech, Pasadena, CA, USA 3

86.95 Second entry in this chapter. Adjust Fudge to get fraction
of apnea minutes in the test records to match the fraction
of apnea minutes in the training records

86.24 First entry in this chapter. Models and parameters tuned
to the training records.

85.63 Z Shinar, A Baharav, and S Akselrod Tel-Aviv University,
Ramat-Aviv, Israel

1

85.54 C Maier, M Bauch, and H Dickhaus University of Heidel-
berg, Heilbronn, Germany

5

84.49 JE Mietus, C-K Peng, and AL Goldberger Beth Israel
Deaconess Medical Center, Boston, MA, USA (unofficial
entry){tab:cinc2000}

