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Hidden Markov Models and Dynamical Systems

State Space Perspective for Time Series1
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The independence relations, or Bayes net, for a state space model.

Prior: ps1

Dynamics: pst+1|st

Observation pyt|st

1Slides at fraserphysics.com/mlds20 doc.pdf
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Recursive Data Assimilation

p(s1) state prior

p(s1, y1) = p(y1|s1)p(s1)

p(y1) =

∫
p(s1, y1)ds1

p(s1|y1) =
p(y1, s1)p(s1)

p(y1)
observation update

p(s2|y1) =

∫
p(s2|s1)p(s1|y1)ds1 state forecast

Two Simple Models

Data assimilation was worked out exactly for two simple model classes in the 1960s:

Linear Gaussian (Kalman Filter):

st+1|st ∼ N (st+1 −D · st,ΣS) state dynamics

yt|st ∼ N (yt −O · st,ΣY ) observation

Discrete States and Discrete Observations: (Hidden Markov Models)

ps1 A vector of prior probabilities for initial state

pst+1|st A matrix of state transition probabilities

pyt|st A matrix of observation probabilities
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A Markov model. Typical output:
. . . vvwvvwuv . . .
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A hidden Markov model. Typical out-
put: . . . effffdf . . .

Q: OK Boomer, why study these models from the ’60s?

A: They are the hydrogen atom and simple harmonic oscillator of data assimilation. For
some problems they are appropriate, and for more difficult problems they provide
analogies for thinking about more sophisticated solutions or approximations.
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An Illustration

Partition of Lorentz state space
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Continuous time τ and
state x

Discrete time t and obser-
vation y (four levels)

θ ≡
{
ps1, pst+1|st, pyt|st

}
The model parmeters

y20,0001 ≡ [y1, y2, . . . , y20,000] Training data

θ̂ = argmax
θ

p(y20,0001 |θ) Maximum Likelihood Estimate

y40,00020,001 Testing data

ĉ40,00020,001 = argmax
c40,00020,001

p
(
y40,00020,001 | c40,00020,001

)
Color by MLE given θ̂
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Q: Isn’t an HMM just a high order Markov model?

A: No.
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For a sequence caaa . . . aaa the
probabilities for the next letter
are pa = .9 and pb = .1 no mat-
ter how long the string of as.
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Estimates

Forward Filter

Given a sequence of observations yt1 and a model θ, the foreword algorithm recursively
calculates

α(st, t) ≡ p(st|yt1),
the probability of each state at time t given all observations up to time t:

p
(
st|yt−11

)
=
∑
st−1

p (st, st−1|yt−1) state probability forecast

p (st, st−1|yt−1) = p (ss|st−1) p (st−1|yt−1)
p
(
yt|yt−11

)
=
∑
st

p
(
st, yt|yt−11

)
observation probability forecast

p
(
st, yt|yt−11

)
= p (yt|st) p

(
st|yt−11

)
p
(
st|ytt

)
=
p
(
st, yt|yt−11

)
p
(
yt|yt−11

) update state probability

Backward Filter and Smoothing

Similarly, given a sequence of observations yTt+1 and a model θ, the backward algorithm
recursively calculates the ratio

β(st, t) ≡
p
(
yTt+1|st

)
p
(
yTt+1|ytt

) .
The peculiar normalization of β(st, t) prepares for calculating the smoothed probability
of the states at any intermediate time t : 1 ≤ t ≤ T

p
(
st|yT1

)
= α (st, t) β (st, t) .

The analogous calculation for a linear Gaussian model, called Kalman Smoothing, com-
bines the forward updated probability with the backward state forecast.
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Baum Welch Estimation

Given an initial model θ1 and observation data yT1 , the Baum Welch algorithm (predates
EM paper) converges to a local maximum of the likelihood

θ̂ = argmax
θ∈neighborhood

p
(
yT1 |θ

)
The algorithm alternates between calculating the conditional distribution of the unob-
served states p

(
sT1 |yT1 , θn

)
and using that conditional distribution to reestimate param-

eters θn+1. The key calculation is

p
(
st+1, st|yT1 , θn

)
∝ β (st+1, t+ 1) p (yt+1|st+1, θn) p (st+1|st, θn)α (st, t) .

Viterbi Algorithm

Given a sequence of observations yT1 and a model θ, the Viterbi algorithm calculates the
maximum likelihood sequence of states:

ŝT1 ≡ argmax
sT1

p
(
yT1 |sT1 , θ

)
The sequence of maximum likelihood states is not in general the maximum likeli-

hood sequence of states. In fact the sequence of maximum likelihood states may be an
impossible sequence.
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Entropy

There are two notions of entropy (Shannon–McMillan–Breiman theorem says they are
equal)

• The exponential rate at which the number of plausible sequences grows

H = lim
T→∞

1

T
log
(∣∣∣{yT1 }plausible∣∣∣)

• The exponential rate at which the probability of each plausible sequence decays

H = lim
T→∞

−1

T
log
(
p
(
yT1
))

For a process of iid draws from from a discrete set X with distribution p one obtains the
familiar

H = −
∑
x

p(x) log (p(x)) .

For a chaotic process, there is a bound on how well one can predict future values.
The remainder of this section explains how to calculate how close a prediction procedure
or model is to that bound.

For a model, θ, and a true φ, the relative entropy is defined by the expectation

D(φ||θ) ≡ Eφ log
pφ(x)

pθ(x)
= Eφ log

1

pθ(x)
−Hφ ≡ Hφ||θ −Hφ ≥ 0.

It is zero if and only if θ = φ almost everywhere. If φ is an ergodic process, then

Hφ||θ = lim
T→∞

−1

T
log
(
pθ
(
yT1
))

)

almost everywhere.
From numerical estimates of the Laypunov exponents, λi, of a chaotic dynamical

system, φ, one can estimate the entropy by

Hφ =
∑
i:λi>0

λi.

Thus the quantity

Hφ||θ −Hφ =
−1

T
log
(
pθ
(
yT1
))

)−
∑
i:λi>0

λi

indicates how close the predictions of θ are to ideal predictions.
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Conclusion2

Working with simple hidden Markov models provides connections to:

• Bayes nets

• Data assimilation

• Viterbi decoding (Dynamic programming)

• Kalman filtering

• EM algorithm

• Information theory

• Chaotic dynamical systems

2Slides at fraserphysics.com/mlds20 doc.pdf

9


